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Background and Objectives: Tinnitus is a complex condition that varies in loudness, quality, 
location, and distress. Different definitions, heterogeneity, and lack of objective measuring have 
challenged the understanding the mechanisms involved and definitive cure. The integrative model 
correlates each of these characteristics to separate parallel and overlapping subnetworks that process 
tinnitus’s perception and emotional reaction. Many of these networks are common with the gap 
pre-pulse inhibition of acoustic startle (GPIAS) neural circuity. GPIAS, which measures tinnitus in 
animals, has recently been used for humans with various recording methods. The present study aimed 
to review the evidence achieved with gap stimuli in patients with tinnitus to support the potential of 
cortical responses recorded with the GPIAS stimulus and to objectively detect tinnitus in humans. 

Methods: Studies were identified by searching electronic databases with relevant keywords.

Results: The role of the auditory cortex in processing short gaps, the possibility of evaluating the 
gap detection ability with GPIAS, and the advantage of cortical responses in reflecting both stimulus 
properties and different aspects of tinnitus emphasize the importance of this issue. The results of 
most studies have proven the gap detection deficiency in tinnitus. However, the validity of the 
auditory startle reflex still needs to be verified due to the inherent variability and different methods. 

Conclusion: Further human studies are recommended because the perception of tinnitus can be 
controlled. An appealing research line in this area is multi-channel cortical evoked potentials. 
Defects of GPIAS with cortical recording can indicate tinnitus.

Keywords: Pre-pulse inhibition, Gap pre-pulse inhibition of acoustic startle (GPIAS), Cortical 
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Introduction

innitus, perceiving sound in the brain or 
ear without an external sound source, has 
affected the quality of life for millions of 
people worldwide. The prevalence of this 
phantom feeling is estimated at 10%-15% 
[1], although up to 30% has been reported 

[2]. Although the prevalence of tinnitus increases with 
age, chronic tinnitus can occur at any age [3], even in 
children [4]. Among people with tinnitus, 1%-3% suffer 
from emotional distress, cognitive dysfunction, and or 
autonomic arousal caused by tinnitus [5], and the term 
“tinnitus disorder” has recently been introduced to de-
scribe this type of tinnitus [6].

No valid treatment for chronic tinnitus can eliminate 
the symptoms [7, 8]. Differences in the definition of tin-
nitus, heterogeneity, and problems measuring tinnitus 
challenge the tinnitus studies [9]. Consequently, the ex-
act pathophysiological pathways are still not fully un-
derstood [10]. Various networks seem to be responsible 
for diverse aspects of tinnitus. Based on the integrative 
or global workspace model, the degree of involvement 
of loudness, memory, awareness, salience, and distress 
subnetworks causes tinnitus subtypes and variability in 
different people [11].

The comprehensive, objective assessment methods fa-
cilitate the investigation of neurophysiological hypoth-
eses that lead to efficacious therapeutic solutions. Corre-
spondingly, it became possible to subphenotype tinnitus, 
which is the basis for standardizing tinnitus assessment 
methods. 

Objective tinnitus testing overcomes the limitations of 
subjective assessment, such as individual and intra-in-
dividual variability, non-usability in certain populations, 
and pediatric and forensic medicine [12]. It is also likely 
to help detect tinnitus in an earlier phase. In chronic tin-
nitus with symptoms lasting more than 3 months, tinni-
tus-related networks may become progressively central-
ized and resistant to treatment [13, 14].

To date, the clinical diagnosis of tinnitus in humans 
has only been based on subjective methods, such as 
self-assessment questionnaires, visual rating scales, and 
psychoacoustic assessments. Various objective methods 
have been employed to investigate tinnitus in humans, 
such as electroencephalography (EEG), magnetoen-
cephalography, auditory brainstem responses (ABR), 
cortical auditory evoked potentials (CAEP), auditory 
evoked magnetic field, functional magnetic resonance 
imaging, positron emission tomography, single photon 
emission computed tomography, molecular genetics and 
blood-based biochemical markers [15]. CAEP can po-
tentially be employed as a non-invasive objective tool 
in tinnitus measurement. CAEP offers a good temporal 
and reasonable spatial resolution, such as high-density 
auditory evoked potentials (AEPs). Tinnitus has distinct 
components, including perceptual characteristics (such 
as pitch, loudness, timbre, and location) and its effects on 
behavior and emotion. Each current tool (psychoacous-
tic assessments and questionnaires) measures only one 
aspect of perception or impact, and it seems reasonable 
and necessary to estimate the different aspects of tinnitus 
in light of the workspace model. The source localization 
of multi-channel CAEPs provides a comprehensive as-
sessment and holistic comprehension of tinnitus by spa-

T

 What is “already known” in this topic:

Tinnitus is a complex condition that has not definitive cure. The gap pre-pulse inhibition of acoustic startle (GPIAS) 
that measuring tinnitus in animal, has recently been used for humans with various recording methods. Cortical 
auditory evoked potentials (CAEP) with GPIAS stimulus potentially can be employed as a non-invasive objective 
tool in tinnitus measurement which can examine gap processing and temporal acuity by the auditory cortex. There 
are common neural areas in the GPIAS and tinnitus network in which the auditory cortex seems to be one of the 
essential areas for both of GPIAS and tinnitus.

 What this article adds:

The present study aims to investigate in the literature whether CAEP with the GPIAS paradigm can be utilized as 
an objective tool to identify or classify tinnitus in humans, according to the same acoustic sensory input pathway of 
CAEP and GPIAS. The results of most studies have proven the gap detection deficiency in tinnitus, but the validity 
of this method still needs to be proved in future human studies.
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tial examination of different auditory and non-auditory 
neural hubs and networks. Another advantage of CAEPs 
over other objective methods is using specific stimulus 
protocols to investigate the probable central mechanisms 
of tinnitus. For instance, comparing CAEP parameters 
at frequencies with and without hearing loss can be used 
to study discordant frequency-dependent map reorga-
nization in the auditory cortex in line with edge theory 
[16, 17]. Another special stimulus paradigm considered 
in this study is the gap pre-pulse inhibition of acoustic 
startle (GPIAS). This protocol can examine gap process-
ing and temporal acuity by the auditory cortex.

GPIAS is one of the modifications of acoustic startle 
reflex (ASR), the most widely used method to detect tin-
nitus in animals, and is currently being studied in humans. 
The startle reflex involves the contraction of the facial and 
skeletal muscles and autonomic physiological response 
that reacts to strong and sudden stimuli in various modali-
ties (visual, auditory, tactile) [18]. It can be recorded in 
different species and holds several crucial types of plastic-
ity that are good candidates for research on brain mecha-
nisms. These startle reflex modulations include pre-pulse 
inhibition (PPI), gap pre-pulse inhibition (GPI), habitua-
tion, sensitization, and fear potentiation. 

The results of animal studies implicate that the cortico-
striatal-pallido-thalamic circuit generates PPI. The neu-
ral circuitry of PPI in rodents reflects automated process-
ing in the pre-attention phase. Still, it can be modulated 
by cognitive processing due to the descending axons it 
receives from the forebrain [19]. Although GPIAS is a 
kind of PPI, they are probably different regarding tem-
poral features and neural circuits involved in gap detec-
tion. The auditory cortex seems to be one of the essential 
areas for GPIAS but it is not for PPI [20, 21]. Although 
the PPI circuit is well established in animals and many 
similarities exist between the measurements of the PPI 
between rodents and humans [22], the neural pathways 
of the PPI in humans are poorly understood and are still 
hypothesized. Human behavioral, physiological, and 
pharmacological studies suggest a complex neural net-
work from the brainstem to higher-level cortical regions 
and the connections between the thalamus and striatum 
with the temporal, prefrontal, frontal, and parietal cor-
tices [23-25]. Common neural areas exist in the PPI/
GPIAS and tinnitus network. The extensive anatomical 
overlap between the PPI/GPIAS regulatory regions and 
the tinnitus networks supports that tinnitus, as a deficit 
of sensory-gating disorder, can affect the GPIAS and 
that cortical recordings can trace these effects. Thus, the 
present study aims to investigate in the literature whether 
CAEP with the GPIAS paradigm can be utilized as an 

objective tool to identify or classify tinnitus in humans 
according to the same acoustic sensory input pathway of 
CAEP and GPIAS.

Materials and Methods

Studies were identified by searching electronic data-
bases and trial registers of PubMed, EMBASE, Med-
line, ClinicalTrials.gov, Google Scholar, and Web of 
Science. Keywords and equivalent terms applied alone 
or in combination were tinnitus, ear ringing, or phantom 
auditory sensation; acoustic startle reflex, pre-pulse in-
hibition, gap pre-pulse inhibition acoustic startle, ASR, 
PPI, or GPIAS; objective tinnitus assessment, objective 
tinnitus evaluation, objective tinnitus measurement, tin-
nitus detection with stimuli included gap, gap-induced 
auditory evoked potentials, tinnitus-related neural ac-
tivity, gap detection, temporal resolution or temporal 
acuity; EEG, auditory evoked potentials (AEP), CAEP, 
auditory late latency response (ALLR), auditory middle 
latency response (AMLR), ABR, auditory cortex or A1. 
Our search was limited to available peer-reviewed and 
full-text journal articles written in English from 2006 
onwards that directly addressed the gap-elicited assess-
ments in humans with tinnitus.

Results

By searching for the keywords mentioned above, 93 
related articles were obtained, of which 73 studies were 
conducted on animals and 20 on humans. The GPIAS 
method was performed in animal studies on different 
species (mice, guinea pigs, hamsters, gerbils, and rats) 
after inducting tinnitus by pharmacological methods 
(salicylate and quinine) or exposure to loud noises [26]. 
Turner first introduced the GPIAS method for rapid tin-
nitus screening in animal models. Subsequently, GPIAS 
was used in several studies to measure tinnitus in animal 
models. The stimuli used for GPIAS in animal studies 
included broadband noise (BBN) or narrowband noise 
(NNB) with a central frequency ranging from 500 Hz 
to 36 kHz and a presentation intensity of 55 to 120 dB 
sound pressure level (SPL). The gap in the stimulus dif-
fered in durations from 2 to 100 ms. Most studies have 
considered a statistically significant decrease in GPIAS 
compared to the control group as a measure of tinnitus 
presence. Some studies devoted a statistical comparison 
of the startle amplitude in the trials with and without 
gaps to confirm the existence of tinnitus. If the amplitude 
was not significant in these two conditions, it indicated 
the presence of tinnitus in the animal. Another method 
was to consider a fixed threshold so the tinnitus group 
would be regarded as if the GPIAS ratio were above that 
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threshold. The control group would be considered if this 
ratio was below the threshold.

In 20 human studies of search, three silent gap-based 
stimulus patterns were used, including the gap in noise 
(GIN), multi-deviant mismatch negativity (MMN), and 
GPIAS paradigms. Nine out of 20 studies examined 
these stimulus patterns in normal individuals with-

out tinnitus, which were not considered in this study.  
Table 1 summarizes the characteristics of the other 11 
studies performed in the tinnitus group.

Several ways were found to examine the GPIAS para-
digm and discover the gap in human studies. Some studies 
employed direct behavioral measurements of gap detec-
tion and psychometric functions. In this regard, two psy-

Table 1. A Summary of 11 human studies performed in the tinnitus group with gap-embedded stimuli

Author (y) Samples Stimulus 
Paradigm

Recording 
Tool

Stimulus  
Characteristics Gap Duration Results

Fournier 
& Hébert, 
2013 [28] 

Tinnitus with 
normal hearing 
(n=15)+control 

(n=17)

PPI and 
GPIAS

Eye-blink 
EMG

Startle: 50 ms broadband 
noise bursts 

(20 Hz-20 kHz) at 105 dB 
(A) SPL

Background: Low-
frequency centered at 

500 Hz (200-1200 Hz) or 
high-frequency at 4 kHz 
(3.5-4.5 kHz) continuous 
noise set at 65 dB (A) SPL

50 ms

Normal PPI and defi-
cient GPI (in both low 
and high-frequency 

background noise) in 
tinnitus.

Campolo et 
al. 2013 [27]

Tinnitus with 
hearing loss 

(n=13)+control 
(n=13)

GIN

A psycho-
acoustic GO/
NO-GO gap 
detection 

task

One-third octave wide 
NBN of 90 s duration 

located 
above, below, or at the 

subject’s tinnitus pitch at 
a level 15 dB above the 

NBN threshold

50 ms

The tinnitus group 
had no defects in gap 
detection compared 

to the control.

Mahmoudi-
an et al. 

2013 [63]

Tinnitus 
(n=28)+control 

(n=33)
Deviant MMN

500, 1000, and 1500 Hz 
pure tones of 75 ms at 
65 dB SPL as standard 
stimuli with silent gap, 

intensity, frequency, 
location, and duration as 

deviant

7 ms

MMN amplitude for 
the gap duration de-

viant was significantly 
smaller in the tinnitus 

group compared to 
controls, suggesting 
a cortical deficit in 

processing short gaps

Mehdizade-
Gilani et al. 
2013 [64] 

Tinnitus with 
normal hearing 
(n=20)+control 

(n=20)

GIN

Psycho-
acoustic gap 
detection in 
background 

noise

Estimation of gap 
threshold by Identifica-
tion of 4.6 of shortest 

gap embedded in series 
of 6-s background white 

noise at 50 dB SL

2-6, 8, 10, 12, 
15, 20 ms

Threshold 
Value of gap detec-

tion statistically 
significant increases 
in the tinnitus group.

Mahmoudi-
an et al. 

2015 [65] 

Tinnitus people 
(n=28) were allo-
cated randomly 
into two groups 

AES 
and PES. 

Following AES, 
participants 

were categorized 
into two 

groups: RI and 
NRI

Deviant MMN

500, 1000, and 1500 Hz 
pure tones of 75 ms at 
65 dB SPL as standard 
stimuli with silent gap 

duration, intensity, 
frequency, location, and 

duration as deviant

7 ms

MMN amplitude 
increase after inter-

vention for all deviant 
except silent gap 

duration.

Shadwick & 
Sun, 2014 

[29]

Tinnitus with 
normal hearing 
(n=7)+control 

(n=9)

GPIAS Eye-blink 
EMG

Startle: 50 ms broadband 
noise at 

100 dB SPL
Background: narrowband 

noise with a 100 Hz 
bandwidth presented at 
38-40 dB SPL centered at 

a frequency of 
patient’s tinnitus

100 ms

Reduced GPIAS in the 
tinnitus group, but it 
was not significantly 

different.
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choacoustic studies analyzed the conscious detection of 
silent gaps [12, 27]. Because the acoustic startle response 
involves many muscles, including limbs and head muscles, 
components of the startle reflex, including eye-blink and 
post-auricular muscle response, were recorded in some hu-
man studies of GPIAS using electromyography or motion-

tracking system [28-30]. Recording EEG is another way to 
study gap detection ability and GPIAS in human studies. 
In this regard, three studies have recorded the mismatched 
negativity (MMN) using the gap deviation paradigm in tin-
nitus. In the other two human studies, CAEP has been used, 
one via the GIN stimulus pattern and the other by GPIAS.

Author (y) Samples Stimulus 
Paradigm

Recording 
Tool

Stimulus  
Characteristics Gap Duration Results

Boyen, 2015 
[12]

Bilateral tinnitus 
(n=22)+age-
matched and

hearing 
loss–matched 
subjects with-

out tinnitus 
(n=20)+control 

(n=10)

GIN
Adaptive 
psycho-

acoustic test

Four different 
band-passed (BP) stimuli 
of Gaussian noise with 
different bandwidths 

(4000‒8000, 4000‒5000, 
5000‒6300, and 

6300‒8000 Hz) at three 
different sound levels (5, 

10 and 
and 25 dB SL) and 300 ms 

duration. 

30 ms gaps at 
the start of 

the test (then 
the gap size 
decreased 

or increased 
according 

to subjects’ 
answers)

The tinnitus group 
did not display elevat-
ed gap thresholds in 

the four stimuli.

Ku et al. 
2017 [52] 

Tinnitus 
(n=16)+control 

(n=18)
GPIAS CAEP

Background noise: 600 
Hz and 8 KHz frequencies 

at 20 dB SL
Startle: 1-kHz tone 

the burst of 20-ms dura-
tion at 65 dB SL

20, 50, and 100 
ms gaps

The effect of tin-
nitus on the N1-P2 

complex is observed 
only in the 20 ms gap 
duration and 8 KHz 
background noise. 
In other stimulus 

conditions, inhibition 
defects occur in both 
tinnitus and control.

Mohebbi et 
al. 2019 [66] 

Compen-
sated tinnitus 
with normal 

hearing (n=20), 
decompensated 
tinnitus (n=20), 

and control 
(n=20)

Deviant MMN

500, 1000, and 1500 Hz 
pure tones of 75 ms at 
65 dB SPL as standard 
stimuli with silent gap 

duration, intensity, 
frequency, location, and 

duration as deviant

7 ms

Reduced MMN am-
plitude for the 
gap duration 

deviant in 
decompensated 
Tinnitus group 
compared with 

Controls and 
compensated 

Tinnitus

Morse & 
Werff, 2019 

[51] 

Tinnitus 
(n=13)+control 

(n=13)
GIN CAEP

White noise stimuli at
50 dB SL with a duration 
of 3 s in which a gap is

embedded

2 ms, indi-
vidual

threshold+2 
ms,

20 ms

No significant differ-
ences in gap-evoked 
CAEPs between tin-

nitus and 
control groups. P1 

latency
decreased for
threshold and

20 ms gap in BBN
for tinnitus.

Wilson et al. 
2019 [30] 

Tinnitus (n= 
12)+control 

(n=18)
GPIAS PAMR

Background noise:  
BBN, NBN centered at 

1 kHz 
(1 octave wide) or a 

one-octave wide noise 
centered on a tinnitus 

pitch frequency 
at 70 dB SPL

Startle: 20-ms broadband 
noise burst at 105 dB SPL

20 ms

No significant effect 
of the background 

conditions and 
reduced GPIAS were 
observed in the tin-

nitus group.

Abbreviations: PPI: Pre-pulse inhibition; GPIAS: Gap pre-pulse inhibition of acoustic startle; EMG: Electromyography; GPI: Gap pre-pulse 
inhibition; GIN: Gap in noise; NBN: Narrow band noise; MMN: Mismatch negativity; AES: Auditory electrical stimulation; PES: Placebo 
electrical stimulation; RI: Residual inhibition; NRI: Non-residual inhibition; CAEP: Cortical auditory evoked potentials; PAMR: Postauricular 
muscle reflex; BBN: Broadband noise.
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Discussion

Continuous advances in the study of GPIAS in experi-
mental tinnitus animal models have led to the emergence 
of different methods of GPIAS recording as objective 
research and diagnostic tool in tinnitus. Among the vari-
ous methods, multi-channel CAEP recording is a new 
and compelling option as a biomarker of healthy brain 
circuitry. Cortical responses with the GPIAS paradigm 
investigate tinnitus’ cognitive, attentional, and tempo-
ral processing defects. The method of detecting tinnitus 
with GPIAS is based on the “filling the gap” theory. It 
hypotheses that when the gap embedded in the back-
ground noise holds the same frequency as the tinnitus, 
gap inhibition does not occur in the startle response be-
cause tinnitus “fills in” the silent gaps in the background 
noise. However, some studies have proven against it. 
When the background noise frequency opposes the tin-
nitus frequency, a startle inhibition defect is sometimes 
induced [29, 30]. However, these studies do not rule out 
that the GPIAS indicates tinnitus. To further test the “fill-
ing the gap” hypothesis, human studies are preferable to 
animal studies because the perception of tinnitus can be 
addressed.

Many neurophysiological tinnitus models agree on 
maladaptive cortical and subcortical plasticity due to re-
duced auditory input (deafferentation) as a neural basis 
of tinnitus [31-33]. According to the edge theory, hyper-
activity occurs in the adjacent regions with hearing loss 
[34]. Numerous studies have demonstrated correlations 
between the predominant pitch of tinnitus and the edge 
frequency [35, 36]. However, some inconsistent evidence 
exists [37, 38]. Since the auditory cortex is one of the 
hubs involved in tinnitus networks (due to an increase in 
neuronal excitability or an increase in synchrony in the 
auditory cortex) [39], changes in the dynamic properties 
of auditory cortex responses (spatial distribution, ampli-
tude, and latency of CAEP components) can be utilized 
as objective diagnostic tools in tinnitus. Although some 
studies have found differences between the tinnitus and 
control groups in the early response of N1 and the late 
response of P300 [40, 41], there is still no agreement on 
which component may be a biomarker of tinnitus [42-
45]. The existent objective methods rely on differentiat-
ing tinnitus from non-tinnitus based on the morphology 
of subcortical/cortical responses [46] and the pattern of 
EEG activity [47]. The EEG and AEP methods with the 
machine learning algorithms, source analysis, and multi-
scale entropy measures have provided a new possibility 
to more accurately differentiate tinnitus neural activity 
from non-tinnitus and compare different subtypes of tin-
nitus [48]. Source localization of CAEP is preferable 

rather than more complex machine learning methods to 
optimize the interpretability of the results [49].

The auditory cortex is essential in temporal acuity. Gap 
detection is one way to measure temporal processing, 
both in humans and animals. Recording CAEPs with 
gap-embedded stimulus patterns is a new perspective to 
assess tinnitus. Although the brainstem circuit regulates 
the startle reflex, the auditory cortex contributes to the 
discovery gap detection in the GPIAS stimulus pattern 
[19] due to the corticofugal radiations from the auditory 
cortex’s layer 5 and 6 neurons to the superior collicu-
lus, inferior colliculus, olivary complex, cholinergic pe-
dunculopontine tegmental area and the cochlear nucleus 
[50]. According to the reviewing related articles, only 
two human studies recorded CAEP with gap stimuli. The 
GIN stimulus paradigm in Morse et al.’s study showed 
no significant differences in gap-evoked CAEPs be-
tween the tinnitus and control groups [51]. However, Ku 
et al. recorded CAEPs with the GPIAS paradigm and ob-
served the effect of tinnitus on the N1-P2 complex only 
in a 20-ms gap duration and 8 kHz background noise. 
The inhibition deficit was not marked in both groups, 
with a 50-ms gap duration and tinnitus pitch unmatched 
by the background noise frequency (600 Hz) [52]. The 
results of this study do not support the concept of tin-
nitus filling in the gap and propose additional studies on 
the effects of background frequencies and gap duration 
on gap processing. The results of cortical inactivation 
studies in animals have shown that the auditory cortex 
is necessary to detect short gaps (<50 ms) but not for 
longer gaps (75-100 ms). Weible et al. study showed 
that cortical interneurons that constantly compare spike 
activity before and after the gap are involved in detect-
ing gaps shorter than 25 ms [53]. Cortex gap termination 
response neurons are neural manifestations of detecting 
short gaps [54].

In a comprehensive review, the effectiveness of the 
GPIAS method was studied for the objective detection 
of tinnitus, but all human and animal studies with vari-
ous response recording methods were studied. Conse-
quently, the difference in stimulation parameters and 
data interpretation between laboratories was mentioned. 
Also, it was emphasized and recommended the prefer-
ence for using human samples (due to the possibility of 
controlling the perception of tinnitus) and recording the 
evoked potentials with gap stimuli [55]. In a 2020 review 
paper, studies on EEG evoked by gap-embedded stimuli 
to detect tinnitus were collected and reviewed [56]. In 
that study, all brain responses with short, medium, and 
long latencies and all stimuli with gaps were reviewed. 
Still, the current review focuses on CAEP studies record-
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ed with GPIAS stimuli in humans only. The difference 
between the current literature review and other previous 
review studies is the focus on the cortical evoked po-
tential recording method (not other reflex-based methods 
or other evoked potentials), GPIAS stimuli (not other 
gap-embedded stimuli), and human samples suffering 
from tinnitus (not tinnitus induced animals). Although 
few studies were conducted to analyze these criteria, the 
possibility of applying cortical responses with GPIAS 
stimuli was soon optimistic, and it was recommended to 
conduct more extensive studies.

The results of the previous reviews indicate that it is dif-
ficult to interpret the effect of tinnitus on gap processing 
due to the small number of studies and different study 
methodologies. One of the reasons for these contradic-
tions is the inherent variability of the acoustic startle re-
flex, which subsequently affects the efficacy of GPIAS 
in assessing tinnitus. Factors influencing this variabil-
ity have been investigated in various studies on animal 
models, including startle stimulus and background noise 
properties (type, intensity, frequency), the distance be-
tween startle stimulus and gap (-stimulus interval), the 
distance between trials (inter-trial interval), gender differ-
ences, circadian rhythm, sample age (due to the effect of 
development and maturity), habituation, facilitation due 
to the gap, salience or importance of pre-pulse stimulus 
and attention to the pre-pulse stimulus (in humans) [57, 
58]. Determining the most effective parameters differ-
entiating tinnitus from normal conditions in the GPIAS 
method leads to its validation and standardization for 
tinnitus diagnosis. Among the factors mentioned above, 
the factors of gap position, gap duration, gap distance 
from the startle, and background noise frequency are the 
most influential. Although longer gaps provide more in-
hibition in the startle response [59, 60], only short gaps 
with distance from the startle (gap-embedded situation) 
process in the auditory cortex can be well evaluated with 
the CAEP tool [54]. In most PPI studies, intervals of 
30 to 240 are usually used between the gap and startle; 
however, the results of studies have shown that the maxi-
mum inhibition occurs at a distance of 100-120 ms [22, 
61]. The background noise frequency mainly affects the 
gap processing, and therefore in some studies, even nor-
mal people have shown less inhibition in low-frequency 
background noise [52, 62]. Hence, it is recommended to 
accurately match high-frequency background noise with 
tinnitus frequency and use a frequency higher than 1 kHz 
as low-frequency background noise to reduce the inher-
ent effect of frequency on gap processing [52]. Further 
studies on this method are needed to determine if the de-
fects of GPIAS are due to tinnitus or other abnormalities 
in the auditory or nervous system.

Conclusion

Although objective markers, such as imaging tech-
niques or electrophysiological responses, have been 
studied to prove the presence or effects of tinnitus, no 
objective tool has been yet introduced to detect tinnitus 
in humans. There is no consensus among studies on the 
GPIAS method to assess tinnitus in humans. However, 
the possibility that the defects of GPIAS can be inter-
preted as an indicator of tinnitus has not been ruled out. 
To determine the efficacy of GPIAS in the proper and 
objective evaluation of tinnitus, human studies are the 
most logical because the perception of tinnitus can be 
controlled. An appealing research line in this area is 
EEG-based cortical evoked potentials. By manipulating 
acoustic stimulus parameters during CAEP recording, it 
is possible to determine the most influential parameter 
for the diagnosis of tinnitus and possibly explain the dif-
ference between the results of the studies.
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مقاله مروری

ترکیب پتانسیل های برانگیخته قشر شنوایی و مهار رفلکس استارتل آکوستیکی با گپ 
پیش تحریکی: روشی برای ارزیابی عینی وزوز گوش

مقدمه وزوز گوش یک شرایط پزشکی پیچیده است که از نظر بلندی، کیفیت صدا، مکان و اضطراب ناشی از وزوز بین افراد متغیر است. 
تفاوت در تعریف وزوز، ناهمگونی انواع آن و فقدان روش های عینی ارزیابی وزوز، شناخت دقیق مکانیسم های تولید کننده آن و ارائه 
راهکارهای درمانی را محدود کرده است. بر اساس مدل جامع درک وزوز، شبکه های عصبی جداگانه و هم پوشانی کننده ای برای درک 
وزوز و واکنش های هیجانی نسبت به وزوز وجود دارند. بسیاری از این شبکه ها با مدارهای عصبی مولد مهار رفلکس استارتل آکوستیکی با 
گپ پیش تحریکی )GPIAS( مشترک هستند. GPIAS روشی رایج برای ارزیابی وزوز در جیوانات است واخیرا با روش های ثبتی مختلف 
در انسان ها نیز استفاده می شود. هدف مطالعه کنونی مروری بر شواهد حاصل از محرکات دارای گپ در مبتلایان وزوز است و از کاربرد 

احتمالی ثبت پاسخ های قشری با محرکات GPIAS به عنوان ابزار عینی ارزیابی وزوز حمایت می کند.
مواد و روش ها با جست وجو در پایگاه داده های الکترونیک، مطالعات انجام شده در این رابطه گردآوری و مورد بررسی قرار گرفتند.

یافته ها نقش قشر شنوایی در پردازش گپ های کوتاه، امکان ارزیابی توانایی کشف گپ با GPIAS و مزیت پاسخ های قشری در بررسی هر 
دو ویژگی های محرک و جنبه های مختلف وزوز، بر اهمیت این روش برای ارزیابی وزوز تأکید می کنند. نتایج اغلب مطالعات بر اختلال 
کشف گپ در مبتلایان وزوز دلالت داشتند. گرچه اعتبار این روش به دلیل تغییر پذیری ذاتی و روش های مختلف ثبت پاسخ هنوز نیاز 

به تأیید دارد.
نتیجه گیری انجام مطالعات انسانی در آینده با این روش توصیه می شود زیرا کنترل درک وزوز در انسان راحت تر است. ثبت پتانسیل های 
برانگیخته قشری بصورت چند کاناله یک زمینه تحقیقاتی جدید در این حوزه فراهم می کند. نقایص GPIAS در پاسخ های قشری می تواند 

نشان دهنده وجود وزوز باشد.  
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